
NASA TECHNICAL TRANSLATION

THE METHOD OF LYAPUNOV ROTATIONAL FUNCTIONS FOR
FINDING OSCILLATING CONDITIONS

V.V. Nemytskiy

Translation of an article in Doklady Akademii Nauk

SSSR, Vol. 97, No.1, 1954, pp. 33-36.

(SA S-TT? 1y 28 ) THE VIETHOD OF LYApUNOV

ROTATIONAL FUNCTIONS FOR FINDING

OSCILLATING CONDITIONS 
(NASA) Jun. 1972 9 p G3/19 

(NASA) ~ ~4

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D.C. 20546 JUNE 1972

17 2-3358

Jnclas
43370

I

NiSA TT F-14428



bOICkLAby fAje44tI A,4k SSi?'
Ve-Q. 97q >1> /7)y. BS 33 J

R-peprt~'ot f the rI~yL2:t- of CJiC2
of t.hc USSeR

AurofR: Vv, __f Y.. -__

THE METHOD OF LYAPUNOV ROTATIONAL FUNCTIONS FOR FINDING

OSCILLATING CONDITIONS

Let us call some closed region G of an n-dimensional

space toroidal, if it may be obtained from a topological torus

or from the spherical neighborhood of a circle T by means of

the exclusion of not more than a finite number of regions entire-

ly embedded in T. A toroidal area which does not coincide with

the torus is,for example, the space enclosed between two torus

surfaces. To each point of a toroidal region may be ascribed

an angular coordinate which determines the meridional surface

upon which this point lies.

Definition 1.

We shall say that the trajectory ?(P, t) of a dynamic sys-
dxitemn Li=fi(x,,x2....,xn), entirely' embedded in G, determines an oscilla-

tory regime with respect to G if:a)c?(P,It)is stable according to

Poisson; b) there exists such a number r0>O, that during the time

interval q'S-<o the point q=g(P,it) intersects each meridional

surface once and only once.

The regime described by a trajectory satisfying b) and

not satisfying condition a) will be called asymptotic to the

oscillatory regime.

F°Rl thker G aJ sP!ptc, P2L6,6 Ce c /I .
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Definition 2

We shall call the function

FV (x(, x 2 ..... , x )
V (.,-,i , ., X..x x)

the Lyapunov rotational function with respect to the closed

function G, if the following conditions are satisfied: F1 and

F2 are continuously differentiable functions in G; 2) equa-'

tion F1-CF 2=O, - .< C <-1 oo, constitutes the equation of a

bundle of surfaces, the axis of which does not pass through

the points of G, the surfaces V= + o &.V = -oocoinciding with

the surface F2 (x,x,. . ,x,,) =; (3); each surface of the bundle

F1 - CF2 =0 intersects G; 4) each point of G belongs to

one of the surfaces of the bundle.

Let us consider a derivative of V(&,, X2X.. x), taken

by virtue of the system of equations dXlIdt=f(x, x2,'". xn),

i.e., let us consider the expression

n (OF1, F

dV i i F )

d F2 (xl, x2 , ... x)

Taking into account that F1/F2=C*, this expression -may

be rewritten as

dl V (,d FlF. F) F
X 1 x= , ) C2 = r (X1, x 2, .. , X) C2.

dV F2 (XI. X2 ... , x n)

Along the integral curve, C may be regarded as a function
of t.
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In addition let us consider separately the value of dV/dt

on the surface V=O, i.e. on the surface F
1
=0. dV/dt has the

following form

dF1 i-

(dtV = F1 - B (xl, , Xn).
\.dr/C=O F2

Using these designations, we formulate a theorem.

Theorem 1

"If all the trajectories of the system enter into the in-

terior of G through all the boundary points of a toroidal closed

region G that contains no singular points, and if with respect

to G there exists a Lyapunov rotational function V = C, for which

Ir!>a2 > 0 and IB[>a2 0> for the points of G, then G con-

tains an oscillatory regime."

Let us consider an arbitrary internal point PO of the

region G, lying on the surface V = 0: when t = 0; since, under

the condition of the theorem,

()C=o > a2 > O,

it follows that the phase point when t > 0 cannot remain on the

surface V = 0 and will pass to surfaces corresponding to larger

values of C; since for any value of C that differs from zery

( )c > a 2 ,

the trajectory will pass to higher values of C when t increases,
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i.e., along the trajectory C may be considered as a monotonic

function of t and, consequently, along the trajectory dV=.dC We
dl dl'

shall show that after a finite time interval the trajectory

will emerge to te surface C= +oo.

We shall find this time interval from 'the equality

7' co

T= Sdl=Sd V/dt
o o

We have

d V/dl t dV+dt

where 8 is so small that for O<C<& dV/dt/>y>O; we have

8S dC 8
dVIdt

0

Let us evaluate the second integral:

dC fdC I dC = 1 co 1
d<V/dl rlC- a - C --L- - -U a28.

Thus

The same evaluation also takes place for intervals of the

change of C from +00 to 0, from 0 to -oo and from --oo to 0.

If we now introduce the angular coordinate ? by means of

the formula tg?=¢C, it is clear that the phase point will return

to the initial surface if ? passes from 0 to 2; i.e., C will

pass from 0 to +o from-co to 0, from 0 to -oo , and from -oo
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to 0.

Since the evaluation carried out by us is suitable for

each of these intervals of change of C, after a time period of

lo< 4( 8 + 1)

the phase point will return to the initial surface.

Thus each trajectory which begins in G on the surface

C = 0 will describe either an oscillatory regime or a regime

that is asymtotic to an oscillatory one. On the basis of the

general theorems, we conclude that within G there will be a

recurrent trajectory, apparently different from a singular point.

This recurrent trajectory will already 'satisfy both conditions

a) and b). The numbers D* and 2=x/%0 will characterize the am-

plitude and the frequency of the obtained oscillatory regime.

Example

We are considering the system

-x = y- +x±2PQ (x, y),
dy =-x.+ EX2QI (X, y),

dz
dt = -z + (X,y),

where p,, Q1, R(x,y) are continuous in the toroidal region

r2 <X 2 + y 2 a< l';'O z < a.

If the following conditions are fulfilled:

Diameter of the region Cm.
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O R (x,y)<a lIns r2<X2 + y2°i 2 ;
XP +YQ > a)O X2 + y2 = r2;

xP +yQ<O Ajr. X2 +y2 = R
2
,

then in a selected toroidal region there will be an oscillatory

regime for those values of , for which the inequalities

-1 + EX2Q <O, °r +ex2 x-YP iO

are valid in the toroidal region. Along this path it is easy

to construct examples of systems which possess a preassigned

number of geometrically different oscillation regimes.

Definition 3

We shall call the closed set S a local cross section of

the trajectory flux, if there exists such a number T, not de-

pending upon the choice of the point S, that every arc f(P,-T,+ T7)

of the trajectory ~(P, t), which emerges from S when. t = 0, has

only one point .in common with S.

Using the Brauer theorem concerning the existence of a

fixed transformation point, the following theorem may be esta-

blished:

Theorem 2

"Let G be a toroidal region, let it have the cross sec-

tion S( n 1), which is an element of the dimensionality n-l, and
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let this element be a local cross section of the trajectory flux

passing through S( n
- 1) Then, if each trajectory ,(Pt), which

originates in the points of S( n
- 1) returns again to S( n

- 1) for

some value t = w, then a periodic solution exists within G."

On the basis of theorems 2 and 1, it is easy to disclose

the existence of a periodic solution for a dynamic system such

a.s the example considered above.

It is of interest to note that on the basis of this

principle an oscillatory egime was found in an article by Rauch (1).

Essentially, the same considerations from the basis of some exam-

ples dealt with in the well-known study by A.A.Andronov, N.N.

Bautin, and G.S. Gorelik (2).

Finally, let us remark that the theorems under conside-

ration are not required for the investigation of systems on a

phase plne, since on a plane the existence of an annular region,

into which all the trajectories enter, is already sufficient for

the existence of a periodic solution; whereas, as has been shown

by an example of Fuller, the presence of toroidal area, into

which enter all the trajectories, guarantees the existence

neither of periodic solutions in this region, nor of an os-

cillatory regime in our sense.
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